1. The equation $x^{3}+7 x-2=55$ has a solution between 3 and 4.

Use trial and improvement to find this solution. Give your answer to 1 decimal place.

2. Use trial and improvement to solve $x^{3}-x^{2}=85$

Give your answer to 1 decimal place.
3. Use trial and improvement to solve $x^{3}+5 x=70$

Give your answer to 1 decimal place.
4. An approximate solution to an equation is found using this iterative process:

$$
x_{n+1}=\sqrt{\left(x_{n}\right)+10} \text { and } x_{1}=3
$$

a) Work out the values of x_{2} and x_{3}
b) Work out the solution to 3 decimal places
5. An approximate solution to an equation is found using this iterative process:

$$
x_{n+1}=\frac{\left(x_{n}\right)^{3}-3}{8} \text { and } x_{1}=-1
$$

a) Work out the values of x_{2} and x_{3}
b) Work out the solution to 6 decimal places
6. A sequence is defined by the term-to-term rule:

$$
U_{n+1}=U_{n}^{2}-8 \mathrm{U}_{n}+17
$$

a) Given that $U_{1}=4$, find U_{2} and U_{3}
b) Given instead that $U_{1}=2$, find U_{2}, U_{3} and U_{100}
7. (a) Show that the equation $x^{3}+4 x=1$ has a solution between $x=0$ and $x=1$
(b) Show that the equation $x^{3}+4 x=1$ can be rearranged to give $x=\frac{1}{4}-\frac{x^{3}}{4}$
(c) Starting with $x_{0}=0$, use the iteration formula $x_{n+1}=\frac{1}{4}-\frac{x_{n}^{3}}{4}$ twice, to find an estimate to the solution of $x^{3}+4 x=1$

